Estimating selection intensity on synonymous codon usage in a nonequilibrium population.
نویسندگان
چکیده
Codon usage bias is the nonrandom use of synonymous codons for the same amino acid. Most population genetic models of codon usage evolution assume that the population is at mutation-selection-drift equilibrium. Natural populations, however, frequently deviate from equilibrium, often because of recent demographic changes. Here, we construct a matrix model that includes the effects of a recent change in population size on estimates of selection on preferred vs. unpreferred codons. Our results suggest that patterns of synonymous polymorphisms affecting codon usage can be quite erratic after such a change; statistical methods that fail to take demographic effects into account can then give incorrect estimates of important parameters. We propose a new method that can accurately estimate both demographic and codon usage parameters. The method also provides a simple way of testing for the effects of covariates such as gene length and level of gene expression on the intensity of selection, which we apply to a large Drosophila melanogaster polymorphism data set. Our analyses of twofold degenerate codons reveal that (i) selection acts in favor of preferred codons, (ii) there is mutational bias in favor of unpreferred codons, (iii) shorter genes and genes with higher expression levels are under stronger selection, and (iv) there is little evidence for a recent change in population size in the Zimbabwe population of D. melanogaster.
منابع مشابه
Estimating Selection Intensity on Synonymous Codon Usage in a Non - equilibrium
Codon usage bias is the nonrandom use of synonymous codons for the same amino acid. Most population genetic models of codon usage evolution assume that the population is at mutation-selection-drift equilibrium. Natural populations, however, frequently deviate from equilibrium, often because of recent demographic changes. Here, we construct a matrix model that includes the effects of a recent ch...
متن کاملMutational Pressure Drives Evolution of Synonymous Codon Usage in Genetically Distinct Oenothera plastomes
Background: Most of the amino acids are encoded by more than one codon, termed as synonymous codons. Synonymous codon usage is not random as it is unique to species. In each amino acid family, some synonymous codons are preferred and this is referred to as synonymous codon usage bias (SCUB). Trends associated with evolution of SCUB and factors influencing its diversification in plastomes of gen...
متن کاملSelection on Codon Usage in Drosophila americana
Synonymous codons are not used at random, significantly influencing the base composition of the genome. The selection-mutation-drift model proposes that this bias reflects natural selection in favor of a subset of preferred codons. Previous estimates in Drosophila of the intensity of selective forces involved seem too large to be reconciled with theoretical predictions of the level of codon bia...
متن کاملSelection intensity for codon bias.
The patterns of nonrandom usage of synonymous codons (codon bias) in enteric bacteria were analyzed. Poisson random field (PRF) theory was used to derive the expected distribution of frequencies of nucleotides differing from the ancestral state at aligned sites in a set of DNA sequences. This distribution was applied to synonymous nucleotide polymorphisms and amino acid polymorphisms in the gnd...
متن کاملEvidence that Natural Selection on Codon Usage in Drosophila pseudoobscura Varies Across Codons
Like other species of Drosophila, Drosophila pseudoobscura has a distinct bias toward the usage of C- and G-ending codons. Previous studies have indicated that this bias is due, at least in part, to natural selection. Codon bias clearly differs among amino acids (and other codon classes) in Drosophila, which may reflect differences in the intensity of selection on codon usage. Ongoing natural s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 183 2 شماره
صفحات -
تاریخ انتشار 2009